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Asymptotic analysis of three-dimensional dynamic equations of a thin plate
was used earlier in [1] to construct the inner state of stress and to indicate
the ways of obtaining more accurate results. The present paper investigates
the problem of obtaining, by means of asymptotic methods, valid boundary
and initial conditions corresponding to the two-dimensional dynamic equat-
lons, and of establishing their asymptotic accuracy.

1, Consider the problem of reducing the three-dimensional dynamic problem of
the theory of elasticity for a thin plate, to the two-dimensional one, with the problem
of satisfying the boundary and initial conditions included. We note that in consider-
ing the inner problem in {1], the author used the initial ratio of the displacement
intensities corresponding to the bending motions of the plate, For this reason, the
deformation in the plane of the plate was of secondary importance, If the plate is
homogeneous, then the bending is completely separate from the deformation in the
plane of the plate in both static and dynamic cases, and their relative intensities are
in no way dependent on each other,

We also note that in reducing the three-dimensional problem to the two-dimens-
ional one, there is no need to define a priori the asymptotics of the state  of
stress in question so as to confirm subsequently that the initial assumptions were correct,
We cannot deal with this problem in more detail, but we can show that either one, or
the other asymptotics follows automatically from the assumption made about the way
in which the state of stress in question varies in different directions,

Let us consider, in a norrow region of length 21 and thickness 2k ,a phenom-
enon with characteristic dimension of the deformation patterns I, , and characteris-
tic time %o ., Obviously we can expect any significant simplifications in the initial
problem of the theory of elasticity only in the case of phenomena for which [, is
much greater than & , and the time f, is much longerthan hV p/ E, the
latter commensurable with the time in which the perturbation traverses the distance

h in an elastic medium, An inner state of stress satisfies these conditions, and its
determination can be reduced to an iterative process at each stage of which certain
two-dimensional equations must be solved. In constructing this state of stress, we
take into account the equations of the theory of elasticity and the boundary conditions
in terms of the stresses at the face planes. In order to satisfy the boundary conditions
at the side surface and the initial conditions of the original problem of the theory of
elasticity and to formulate the boundary and initial conditions of the inner problem,
we introduce certain, rapidly changing states of stress which, in a certain sense, exert
little influence on the inner state of stress.
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2, Let us introduce the dimensionless variables. We refer the displacements to

% , and the stresses to the modulus of elasticity E. We investigate the states of
stress varying in different manner in different directions, remembering that our argu-
ments must be relevant to the inner problem, as well as to the rapidly changing states
of stress, Let the quantities 7,7, and rg (r, = p;/q,ry = p,/ q where
Pi, P2 and ¢ are integers) characterize the variability of the state of stress over the
space variables Z, ¥ and z ., This means that for each variable there is a correspond-
ing characteristic dimension l; =1e"i (i=1,2,3). Since the characteristic
dimension in the direction of the 2z -axisis s, wehave rg= 1. The charact-
eristic time 1, is given by

to=¢e-1Ypl E

and the parameter ® characterizes the variability of the state of stress with time.
Let us carry out the scale expansion transformation, referring the variables z, y,
z and t to the corresponding characteristic dimensions

z v z
=1, =7, =7, T=

Having passed to the new variables, we seek solutions of the equations obtained
from the Lamé equations, for any states of stress, in the form of asymptotic series in
terms of the small parameter A = gl/¢

s o= g s (s)
Ve=¢ onvx,... 2. 1)
and using the relations of Hooke's Law we obtain similar expressions for the stresses,
The choice of the quantity % in(2, 1) is somewhat conditional. For exampie,
in considering the inner state of stress it can be related to the intensity of the external
forces, The main problem which must not be disregarded consists of the fact that, in
the expansions of the type (2, 1) for the stresses and displacements, some of the first
terms vanish identically. The number of such terms differs for the different stress and
displacement components, and is automatically defined by the character of the state
of stress in question. We can state it more accurately by saying that the number dep-
ends on the variability of the state of stress in different directions, Determination
of the number of the first, identically vanishing terms in the expansions of the type
(2.1) will lead, in the end, to establishing the asymptotics of the state of stress in
question, since the intensities of all the stresses and displacements will then become
known,

3. The inner state of stress changes little in the plane of the plate, and we have

0 < r; < 1. We shall restrict ourselves, for simplicity, to a single variability
index T in the plane of the plate, using the larger of 7; and r, asits value. The
choice of the value of % in(2,1) can be made dependent on the condition that a
normal load applied to the face planes is independent of the relative thickness of the
plate, Then, for the deformation in the plane of the plate, we have x =— 3 +3r



980 M, L Gusein- Zade

and for the bending we have % = — 4 -+ 4r.

We can easily obtain the relation connecting the parameter ® characterizing the
variability of the process with time with the value of r , by making certain that the
inertial terms appear in the two-dimensional equations of the inner state of stress in the
zeroth approximation, Wehave ® = 1 + r for the deformation in the plane of
the plate, and @ = 2r for the bending,

4, A state of stress in the boundary layer which appears near the plate edge {2, 3],
diminishes rapidly with increasing distance from the edge. Introduction of this state
of stress makes it possible to satisfy the boundary conditions, formulated in terms of
the theory of elasticity, at the side surface of the plate, to establish the boundary cond-
itions of the inner problem, and to determine more accurately the state of stress near
the edge,

The boundary layer near the edge z = 0 shows a large degree of variability in
the zwand zdirections, and same variability as the inner state of stress in the

y -ditection and with time, Thus we have the following values for the variability
indices in the x,y,2 and ¢ directions:

r1==1, rg<15r331, 0<&)<2

The value of ® in(2.1) will bechosen equal to the highest order of the quantities
of the inner problem appeating in the boundary conditions at the side surface.  We
obtain ©v.(® and v from the following equations of plane deformation for a balf-
strip:

31,(‘) 31,(3) Fpls-dareeg)
o+ w0y (G + T )+ vl = g — R
Hpi® (8) Jpls—da+enq)
O+ 1) 5 (o + |l = g — R
m 1,* . g-qw) . az,g—aqﬂm
=M+ ) g T
(t~q+p) F3p(t~3¢11p)

RE = (0 + W) g 0 ——

Here A* and p* are the Lamé constants referred to the modulus of elasticity E.
They can be expressed in terms of Poisson's ratio v in the form

1

v
M=arsa— w* =Ty

The following conditions hold on the face planes:

2 o
["32— + T]cw‘-l
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and the determination of p,(» is reduced to solving the antiplane problem for a
half-strip

. gzvs) 621{“) _ azvff*mm) _R®
B ( ET) ET N s n (
FpW=1tP)  gpls=3+P) 53p(8-20+2P
® _ w [0 (= z _ v ]

[avg,s) N av(;-aw)] o
o ' 0  ji=i1

Thus the determination of the boundary layer in the dynamic as well as the static prob-
lem separates into solutions of the plane and antiplane problems for a half-strip, For
the dynamic processes for which O < » < 2, both these problems have a quasi-
static character, The inertial terms do not in general appear in the equations of a
series of first approximations, and in the approximations in which they do appear, they
are determined in terms of the quantitites obtained from the preceding approximations.

It can be shown that the two-dimensional dynamic equations of the inner problem
carresponding to the accuracy of O (e*-2r) have the same boundary conditions as those
of the staticcase [2]. It follows that for the dynamic problems not only the boundary
conditions of the classical theory, but also the stronger conditions [2] have the same
form as those of the static problems. The boundary conditions corresponding to the
classical theory are of accuracy of O (e'-7) , and the stronger boundary conditions
of O (e-?r),

5. Next we consider the problem of introducing a rapidly changing state of stress
which, although it does not, in a certain sense, exert any appreciable inflnence on
the inner state of stress, nevertheless it allows both states to satisfy the initial condit-
ions of the initial problem of the theory of elasticity,

In the four-dimensional space z, y, z, ¢ the plane ¢ == ( represents, for the
phenomenon under consideration, a kind of 2 boundary, This suggests a possibility of
introducing into our discussion an auxilliary state of stress with large variability with
respect to time, but with the same variability in the directions of the Z, ¥ ~axes as
the inner state of stress. Thus the variability indices for the auxilliary state of stress
in the directions of the , ¥, zand ¢ axesare r, <1, r, <1, r3=1, 0 = 2.

We choose the value of % in (2, 1) to be equal to the largest order of displace-

ments in the inner problem, and we obtain the following equations for v,® (zy) and
v, .

e 0
Fle _"2(1+V) FIo) = — Ry (xy)

) (14w —2v) Y

(2)
ar: I—w Froa R;
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R“)' 1 aspf;-qw) 1

Y == e T Ia=w &
g (BeLTEINIP) gy (s-agkar)

_b_é_ ( 5 _+_ an ) + Avg:«zqﬂp) (xy)

JE=a+p)  gyls=a+p)

w_ 1 0 (Fx
R = 2(1—v) ag( ¢ am

1—2v (s~20+2p)
) + Ty v

When § = =4-1, zero stress conditions must prevail, i.e.

' av{*-a+P)
L lt=t1 oE a1 0 (=)

o® @D gyle-a+p)

7?vw+7%TF7W“+“%Tﬁ

=0
{=t1

Thus the process of constmcting an auxiiliary state of stress in any approximation
is reduced to that of solving the wave equations under certain initial and boundary
conditions., The equations and boundary conditions are homogeneous when s <7
g — P and become, in general, inhomogeneous when s> g —p.

We note that in the case of the state of stress under consideration the propagation
of perturbations for the transverse displacements (relative to the plate) oceurs with the
velocity of longitudinal waves, and for the displacements in the plane of the plate,
with the velocity of ransverse waves,

We shall investigate the bending and deformation in the plane of the plate separat-
ely. In the bending case Ux® and v,(® are odd functions and v, isan even
function of . In the case of deformation in the plane of the plate the relationship
is reversed, v, and v,® being evenand p, odd. Therefore, to construct
an auxilliary state of stress it is sufficient to consider the wave equations for a function
even andoddin [ . The problem has alteady been studied in detail, and its results
should be used in formulating the initial conditions of the two-dimensional problems,

6, We have reduced the construction of the auxilliary state of stress to solving
the wave equation (8, 1) with the boundary and inftial condittons (6. 2) and (6. 3)

%—%%ﬁwg,v) (6.1)
d
T e = ¥ (6.2

B .0)=1@) 3

The solution of this problem consists of a solution of the homogeneous equation
satisfying the null boundary condition and specified initial conditions, and of the solu-
tion of the inhomogeneous equation with inhomogeneous boundary conditions and zero
initial conditions.

-=F® (6.3)

1
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Let u({, 1) beanevenfunctionof { . If @ (L, 1) =0, ¢ (1) =0,
then the solution of the wave equation has the form

u (Ea T) = Uy + u,T + u* (C’ T) (6.4)

1 1
u=1@a, w={FEda

The first term of (8,4) yields a part of the solution independent of time, the second
term a part linearly dependent on time, and the third term a part oscillatory with
respect to time, The solution u ({, ¥) will be pure oscillatory with respect to
time if and only if the mean values of the initial conditions (6, 3) vanish, i.e, if

1

Vtoa =0, (Feyar=0 (6.5)

0 0

and we shall call (6. 5) for brevity the oscillatory conditions,

¥ 9 (1), v (tr) in(6,1) and(6.2) are not zero but purely oscillatory funct-
ions with respect to time, then the solution of (6. 1) with conditions (6. 2) and zero
initial conditions is obviously a function purely oscillatory with respect to time,

Let u (L, 7) be an odd function of { . Then the solution of (6. 1) with condi-
tions (6, 2) and (6, 3) will always be a function purely oscillatory with respect to time,
Thus in the case of the functions odd in { , the solution of the wave equation will
always be oscillatory with respect to time, For the even functions of [ this will be
true only when the conditions of oscillation are met, i.e. when the mean values of
the initial conditions vanish,

7. Le us now consider the problem of satisfying the initial conditions of the parent
problem of the theory of elasticity, of formulating the initial conditions of the two-
dimensional inner problem, and of establishing their asymptotic accuracy, using the
example of transverse motions of the plate, the motions caused by a discontinuous
change in the surface loading at the imstant ¢ =0 .

Let the plate be at rest when ¢ < 0, but be at the same time deformed by the
action of some surface load. When the surface load changes discontinuously at the
instant ¢ = O, the plate is set in motion, In the case of the initial problem of the
theory of elasticity, the three displacement components assume at the initial instant
their prescribed values, and the three velocity components vanish, The following
boundary conditions hold at the face planes of the plate:

Eopltmi1 =T (zy), EO:|j=pn=41" (t<0)
Esz k='}:1 = tx+ (xy)’ Eﬂz |§=:|:l = i Tz+ (t > 0)

The inner state of stress of the plate can be represented, forboth ¢ << 0 and? > 0,
in the form of asymptotic series of the form (2.1) in which % = —4g - 4p. The
quantities v, (zy) and v, are polynomials in f, and their degree increases with
increasing order of approximation, We have



984 M. L Gusein-Zade

— {0) (8}
Ve = (xy), vz =uvzy (1.
I(lp...‘rg) e {7} (A} o1}
v ;U;‘l vl (xy)’ v(z‘l Py _ v(z?) v)
(2q-2p) __ = (29-2P) {202 e
Ve = o (zy), v =y 2, Ba-te)

(3g-3p) __ » (3q-3p) 3, = - -
Vel = o LT (ay), o = 3P pey,B0-00)

. (41~4D) __  (40~4p) | 2 (40+4 3 -
22 == Uzo + gzifieq P) -+ Q‘qu iP)

etc, At T = 0 all quantities except V3P (zy), v1™*P appearing in the
right hand sides of (7. 1) are coatinuous. The excepted quantities undergo a jump at

v = ( , the magnitude of which is given by the jump in the value of the surface
load

3G-3 i wp T — Y
va(!lq D) e — Ugfl 3p) lf="==+0 — 2(1 + V) Al P Cx x (xy)
(da=ep) | (sa-1P) | v AP
VUzg T = Vzg tedo = Ty TF <
( v, —1.") + 6(?,,“’—-— ") )
a an

The appearance of the factor A" in the above conditions indicates that the contri-
bution of the tangential surface forces can be compared with the contribution of the
normal surface forces oaly in the case when A%Py_ ~ 1, . Since by definition
T, ~ A%, wehave T, ~ A TP,

Let us now bring in the problems A, (xy) and A.*) refemring, respectively,
to the determination of the displacements V,.® (zy) and V,*) for the state of
stress purely oscillatory with respect to time,

It can be shown that for s <C 3¢ — 3p the solutions of the problems 4.} (xy)
vanish identically since they reduce to the problem of solving homogeneous equations
with homogeneous initial and boundary conditions, The solution AS**" on the
other hand is not zero, since it satisfies the homogeneous equations and boundary cond-
itions with nonzero initial conditions.

The solutions of the problems A,(*) satisfy, for s <C 4g — 4p the bomogen-
eous equations, homogeneous boundary conditions and the following initial conditions:

‘,(53 ‘ . v(g)l o vfs) ' .{?E_{z:)_ = 0
z jt=0 = V20 |t=+0 70 |Y==omily 9T jr=0

The requirement that the solutions of the problems A, (s < 4g — 4p) satisfy the
conditions of oscillation (6, 5), yields the initial conditions of the two~dimensional
inner problem for v > 0
o™
U:x) tv::-{—o = v;}? ‘rs«o, *’79_-?'

=={) (1.2)
T==4-0
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After satisfying the conditions of oscillation, the initial conditions of the problems
A,® (s << 49 — 4p) become homogeneous and the solutions of these problems va-
nish identically.
Let us consider the problem A9 which reduces to that of solving a homo-
geneous wave equation with homogeneous boundary conditions and the following initial
condjtions:

Vi‘q—“}) lrr.-.:o = Ug(‘)q-‘p) zt=—-o - U;:)q‘w) }tm-i-o T (7.3)
2 Ay AP~ A } ol el 0
Pr="F ® T T ke

The condition that the solution sought obeys the conditions of oscillation (6.5), yields
the stronger initial conditions for the two-dimensional inner problem

{ 14v ATP

] N ) - = (1.4)

d(em—Tr) | dr,—1h) ] aof®
3 + an ' at

T=0 =

The initial conditions (7. 3) of the problem  AS™*?  yith (7, 4) takeninto account,
assume the form

( - -
VTP g = (1 — 3% (087 iy — 088 fre)

From the initial conditions (7. 2), (7. 4) specified for different approximations, we
can pass to the initial conditions not containing any approximation indices, but determ-
ined to within the same asymptotic accuracy, The initial conditions corresponding
to the two-dimensional equations of the inner problem have the form

du gy
Uyo fimto = Uso im0y 55— |,_., =0 (7.5)
with the accuracy of O (") and
1 14w
Ugo ltmto = U0 |tmmg + B g T ¥ (1.6)
0=t | A —tH]
[ oz + 8y * at t=-+0 - 0
with the accuracy greater than O (e*™*") , Here .U, = hv,,.

Thus, using the asymptotic approach to solve the bending problem, we have obtain-
ed only two specified initial conditions irrespective of the degree of accuracy; we
specify, at the initial instant of time, the transverse displacements and transverse vel-
ocities of the points of the middle plane,

The number of initial conditions (7, 5) with asymptotic accuracy of O (&*™%)
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is in full correspondence with the type of the two~dimensional equation of the inner
problem cosresponding to the same degree of asymptotic accuracy. For the higher
degree of accuracy (higher than O (e*™*") ) such a correspondence no longer exists.
We have two sharpened initial conditions (7, 6), but the two-dimensional equation of
the inner problem contains a fourth order time derivative,

This confirms once again the need for using an iterative process to obtain more
accurate resulfs, in the investigations of thin plates behavior. When the problem is
solved by iterative methods, there is a full correspondence between the type of the
equation and the number of initial and boundary conditions at each stage.

We note that the stresses 0, (xy), 0,; are of the same order for the oseillatory
state of stress, as for the inner problem, When the stresses O (2Y), Oy,  are
determined with the accuracy exceeding that of the Kirchhoff —Love hypothesis, then
the oscillatory state of stress must also be taken into account,

8, We shall pause briefly to formulate the prescribed initial conditions and to
establish their asymptotic accuracy for the two-dimensional dynamic problem of de-
formation of a plate in ifs plane, As an example, we shall consider the problem of
motion arising in the plane of the plate as a result of a jump in the value of the surface
load, Let the boundary conditions at the face planes of the plate have the form

Ecxz *§=§:1 =T, (zy) Esz ltail =T, (t<0)
Es,, f;=i1 = ‘tx+ (zy), Es, k=11 = v >0

We use the same reasoning as in the case of the bending motions of the plate. For
plane motions of the plate we find that the asymptotic approach yields, for each approx-
imation, four initial conditions for two translations and two plane velocities of the
plate, the number corresponding to the character of the two-dimensional dynamic
equations, We have established that the initial conditions

Yxp
Uyo It=+0 == Uyg ‘1:-0 (zy) = t=+0 =0 (zy)

have asymptotic accuracy of O (e*™*").
We have also obtained the stronger initial conditions with accuracy higher than
O (e*47) . For the problem in question these conditions have the form

14v 1 a(rx-"Tz+)
Uyg lt=to = Yo lt=-0—F T—w E ™ (zy)

Qu

I =0 @)

We note that the order of the stresses 0 for the oscillatory state of stress is the
same as for the inner problem. The ocscillatory state of stress should be taken into
account when determining the stresses  Ox (zy) and Oy (zy) with the accuracy ex-
ceeding O (e%%),
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